MOTION: Change in position
KINEMATICS: Study of motion
MECHANICS: Study of objects in motion

VECTORS VS. SCALARS

DISTANCE: Length of path traveled. (Scalar, direction doesn't matter) What an odometer reads. Mileage in a car.

DISPLACEMENT: Change in position from start. (Vector, direction matters) Straight line from start to finish ignoring path taken.

Distance vs. Displacement

Nick forgot his pencil again and this makes Ms. Nigro pace back and forth around the room. Ms. Nigro walks 10 m to the right, then 8 m to the left, then 3 m to the right.

1) What's Ms. Nigro's distance covered?

VECTORS VS. SCALARS

AVERAGE CONSTANT SPEED: scalar

How fast, on average, we traveled throughout the entire trip.
(Scalar, direction doesn't matter)

$$
\text { Speed }=\frac{\text { Distance }(m)}{\text { Time }(s)}
$$

AVERAGE CONSTANT VELOCITY:
Vector

How fast we need to travel to get from start to finish in a straight line. (Vector, direction matters)

$$
\text { Velocity }=\frac{\text { Displacement }(m)}{\text { Time }(s)}
$$

Which quantity tends to be larger, speed or velocity?

Speed vs. Velocity

Nick forgot his pencil and this makes Ms. Nigro pace back and forth around the room. Ms. Nigro walks 10 m to the right in 1 s , then 8 m to the left in 6 s , then 3 m to the right in 3 s .

1) What is Ms. Negro's constant average speed? $10 \mathrm{~m}, ~ i s$

Avg. $s p=\frac{\text { Distance }}{\text { Time }}=\frac{21 \mathrm{~m}}{10 \mathrm{~s}} \div \frac{2.1 \mathrm{~m} / \mathrm{s} 8 \mathrm{~m}}{\stackrel{5 \mathrm{~m}}{4 \mathrm{~m}}} 6 \frac{35}{105}$
2) What is Ms. Nigro's constant average velocity?

Aug. Vel $=\frac{\text { Displacement }}{\text { Time }}=\frac{5 \mathrm{~m} \text { right }}{10 \mathrm{~s}}=.5 \mathrm{~m} / \mathrm{s}$ right
3) When, if ever, will speed and velocity be equal?

If Direction never changes

Speed vs. Velocity

Mri wants a new lab partner. She moves 3 m North and 4 m East in 1 minute. 605 .

1) What distance did Brit travel?

+ Equation

7 m
2) What + subw/units 5 m @ 53° Eff N
3) What is Brit's average speed in m / s ? $S=\frac{\text { distance }}{\text { time }}=\frac{7 \mathrm{~m}}{60 \mathrm{~s}}=.12 \mathrm{~m} / \mathrm{s}$
, Solve w/ units

4) What is Bris's average velocity in m / s ? ($\$$ Direction)
$v=\frac{\text { displacement }}{\text { time }}=\frac{5 \mathrm{~m}}{60 \mathrm{~s}} 0^{53^{\circ} E \text { of } N}=08 \mathrm{~m} / \mathrm{s} @$ 53° Eat N.
5) Why is Bri's speed different from her velocity?

Bris changed direction.

Speed and Velocity

$$
\begin{array}{ccl}
\begin{array}{c}
\text { Constant Speed } \\
\text { and }
\end{array} & \overline{\mathbf{V}}=\underline{\mathbf{d}} & \begin{array}{l}
\overline{\mathrm{v}}=\text { average velocity or average speed }(\mathrm{m} / \mathrm{s}) \\
\mathrm{d}=\text { displacement or distance }(\mathrm{m}) \\
\mathrm{t}
\end{array} \\
\text { Constant Velocity } & \boldsymbol{\dagger} & \begin{array}{l}
\text { time }(\mathrm{s})
\end{array}
\end{array}
$$

1) Taylor is driving her car at $25 \mathrm{~m} / \mathrm{s}$ East. What is her displacement after 40 seconds?
2) Joey's balloon drifts North at $1.6 \mathrm{~m} / \mathrm{s}$. How long will it take to travel 80 meters?
3) A sled travels 52 meters downhill in 4 seconds. Find the average speed.
